

Exercise 06

A cascade of repressors

Consider a cascade of three repressors:

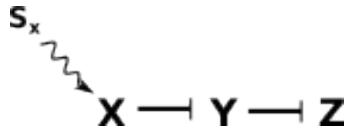


Figure 1: Cascade of three repressors. Signal S_x is keeping X in its inactive form and prevents the production of Y .

Protein X is initially present in the cell in its inactive form. Protein Z is present in the cell at its steady state concentration, and is continuously produced at rate β . At $t = 0$, the input signal of X , S_x is removed. X is rapidly converted to its active form, X^* , and binds to the promoter of gene Y . As a result, production of protein Y begins. When Y levels increase above threshold K_Y , gene Z is repressed. All proteins have the same degradation/dilution rate α .

- a)** Sketch the concentration of Y and Z as a function of time.
- b)** Show that the response time of Y , with respect to the addition of S_x , is:

$$t_{Y_{1/2}} = \frac{\ln(2)}{\alpha}$$

- c)** Show that the time at which production of Z stops, t_{YZ} , is:

$$t_{YZ} = \frac{1}{\alpha} \cdot \ln \left(\frac{Y_{st}}{Y_{st} - K_Y} \right)$$

- d)** What is the response time of Z , with respect to the addition of S_x ?
- e)** What is the effect of placing Z at the end of a cascade, as here, compared with placing Z under simple repression? Why might this effect be biologically useful?